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In further work on recognition and learning we present a reactor network consisting of four electrically coupled
chemical reactors that are connected via Pt working electrodes in the fashion of a Hopfield network. Each
reactor can assume either a periodic (P) or a nodal (N) state in the Belousov-Zhabotinsky (BZ) reaction.
Two out of 16 (24) dynamical patterns are encoded by local coupling. The encoded patterns have been
chosen such that their Hopfield matrix shows both positive and negative coupling strengths. To successfully
recognize all remaining (14) patterns, an averaging procedure for all amplitudes was introduced. Numerical
simulations using the seven-variable Gyo¨rgyi-Field model for the BZ reaction are in good agreement with
the recognition experiments. We also simulate an iterative learning method to build up the synaptic strengths
from a random Hopfield matrix without any back-propagation of errors. Recognition occurs abruptly at a
certain number of iterations in the absence of any noise reminiscent of a phase transition. The inclusion of
parameter noise is found to always broaden the recognition probability. Parameter noise enhances the
recognition of patterns in the early iteration stages, while the recognition probability is drastically reduced in
the later stages of iterative learning.

Introduction

The motivation for the present work is our fascination with
physicochemical systems that are able to perform logic func-
tions1,2 or to learn and to recognize dynamical patterns.3-8

Physicochemical learning and recognition devices must be
networks composed of chemical subsystems (e.g., chemical
reactors) that are coupled in specific ways. In previous studies
we described the recognition and nonrecognition of chemical
oscillation patterns with a reactor network consisting of four
identical chemical reactors that were locally and globally
coupled by Pt working electrodes. All four reactors were run
in oscillatory states of the Belousov-Zhabotinsky (BZ) reaction.
The oscillatory patterns were reached either from a focal steady
state3 or from a nodal steady state4 using an external periodic
perturbation with the electrical current as the bifurcation
parameter. The encoded patterns consisted of in-phase4 (positive
coupling) or out-of-phase oscillations3 (negative coupling), and
all frequencies were practically identical. Without the entraining
effect of global coupling the experimental oscillatory patterns
eventually lose their phases and become destabilized. If each
reactor is coupled with any of the other reactors, the network
will be similar to a Hopfield network which is capable of
performing the task of association; it associates (recognizes) a
presented pattern of reactor states with a pattern that it has
learned before.
In this work we reduce the complexity of the system by

excluding global coupling altogether and by using local coupling
only. Each reactor in the network must be in one of two
dynamical states. The transition between the two states should
not be gradual but sharp for efficient operation. In a distant
analogy with in vivo neurons and axons9 we chose an oscillatory
state denoted by the symbol P (periodic) and a steady state
denoted by N (nodal) in this work for the two dynamical states.
The Belousov-Zhabotinsky (BZ) reaction serves as the two-
state chemical reaction, although other nonlinear reactions would
do as well. Here the process of recognition involves the

transformations between the two reactor states P and N. As
described earlier4 an increase of an applied electrical current as
the bifurcation parameter will change a P state into a N state
via a saddle node infinite period bifurcation (SNIPER) in the
BZ reaction. Thus the high-current node is excitable since a
(negative) pulse of the electric current will move the system
across its bifurcation (SNIPER) point into the oscillatory region
with a large oscillatory excursion. Therefore, the application
of a current to the Pt working electrode of a BZ reactor will
determine whether a reactor is in its oscillatory P or in a high-
current excitatory N state.
In a Hopfield net, learning is a one-step process that consists

of calculating a coupling matrix from the patterns to be
encoded.10 The resulting 4× 4 matrix (four-reactor network)
may contain positive and/or negative coupling strengths depend-
ing on whether a given coupling interaction is positive or
negative. Positive coupling is attractive, i.e., it will drive two
coupled reactors into identical dynamic states, whereas negative
coupling is repulsive, driving the reactors into opposite states.
However, when both positive and negative couplings are present
in the Hopfield matrix for a given encoded pattern, the situation
becomes complicated since both transformations Nf P and P
f N may be required in the recognition process. In this work
we have solved the problem of simultaneous positive and
negative coupling in the absence of global coupling by first
averaging over one or more oscillations in a P state and using
the averaged (and not the oscillatory) signal as the weighted
input to the other reactors. With this averaging procedure, which
covers periodic as well as nodal states, any pattern is recognized
even in the absence of global coupling. Furthermore, any phase
relations are no longer required.
Learning by Iterative Self-Encoding in a Hopfield Net.

Instead of using the traditional one-step learning procedure10,11

it is possible to let our small reactor network learn patterns by
self-encoding its Hopfield matrix in many small steps. This is
demonstrated by computer experiments in this work. We
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achieve self-encoding by a repetitive presentations of the same
patterns. This simple procedure facilitates the inclusion of noise
in a straightforward manner. Each time a pattern is presented
to the network, the relevant coupling strengths in the Hopfield
matrix are augmented or lowered by the same increments
according to a Hebbian learning rule.12 This learning method
works even in the presence of spurious other patterns that,
however, are presented less often. After each single learning
iteration, a recognition experiment is carried out as a check.
When the network has recognized a pattern after a given number
of iterations has taken place, the learning process is considered
as successful. In the absence of any or little noise, it will be
observed that recognition occurs abruptly from one iteration to
the next after a minimum number of iterations have been carried
out. Therefore a threshold exists that leads to a sharp “phase
transition”: below threshold there is nonrecognition and above
threshold every single recognition event is successful. No
further optimization procedure such as back-propagation of
errors13,14 is necessary.
We shall show that learning from random weights (synapses)

by the inclusion of parameter noise in the coupling strengths
generates a broadened but lowered recognition curve, and the
probability of recognition is nonzero at a substantially lower
number of iteration cycles than in the absence of noise. For
this reason large noise turns out to be advantageous only in the
early stages of learning since it dramatically increases the
probability of recognition at a lower number of iterations. On
the other hand, strong noise is detrimental in the subsequent
stages of learning where the noise-free system has achieved full
recognition. In the latter case, a repetitive addition of noise
decreases the probability of recognition by “forgetting”, i.e.,
by randomizing all coupling strengths (elements) in the Hopfield
matrix.

Experimental Section

Four CSTRs (continuous flow stirred tank reactors) of 4.2
mL volume each are connected to their reference reactors via
Teflon membranes (Figure 1). Three reactant feed streams into
each CSTR are delivered by precise piston pumps at identical
rates with three syringes (50 mL each), where syringe I delivers
0.42 mol/L NaBrO3; syringe II, 1.5× 10-3 mol/L Ce2(SO4)3

and 0.9 mol/L malonic acid; and syinge III, 1.125 mol/L sulfuric
acid. The flow rate was fixed atkf ) 6.0× 10-4 s-1 (residence
time 27.8 min) in order to establish stable P1 oscillations. The
outflow was pumped off at the top of each CSTR. The reference
reactors contain 0.4 mol/L sulfuric acid. Reactors, feed lines,
and syringes are thermostated at 25°C; Teflon-coated magnetic
stirrers operate at 1000 rpm. The redox potentials Poti in each
CSTR are measured by Pt/Ag/AgCl redox electrodes and
digitally monitored at 1 Hz. Owing to variations in the
sensitivities of the redox electrodes, the normalized redox
potentials are presented in arbitrary units. Electrical coupling
is performed by applying an electrical currentGj(t) to the Pt
working electrodes inserted in each reactor. The electrical
current is controlled by galvanostats (E&G Instruments) ac-
cording to eq 3. In the recognition phase all currents are
reevaluated every second: the output (Poti,av) affects the next
input (Gj(t)) in a cyclic fashion until the network is stabilized
at a given pattern after a short transience of∼1 oscillation has
elapsed.
SNIPER Bifurcation. When currents higher than 0.85 mA

are applied to the Pt working electrode (Figure 2), the BZ
oscillations change into a nodal steady state whenkf ) 6.0×
10-4 s-1. Thereby the period of the BZ oscillations increases
from 30 s to∼1000 s as the current approaches the bifurcation
point, demonstrating a so-called SNIPER (saddle node infinite
period) bifurcation (see also ref 4). The amplitudes of the
oscillations remain almost constant up to the SNIPER point,
where they collapse to zero. The signals of the redox electrodes
were arbitrarily set to 1000 au at the steady state, which is the
reference state. The steady-state region displays a practically
constant potential independent of the current. The calculated
aVerage value of the redox potential Potav in the P regime
decreases slightly with increasing currents in the neighborhood
of the SNIPER bifurcation point (Figure 2).
Before the start of a coupling experiment all electrical currents

(G1in to G4in) are set to 0.45 or 1.05 mA in order to establish
either oscillations (P) or a nodal steady state (N), respectively,
as initial conditions. For four reactors all (16) possible
oscillation patterns are listed in Figure 3.
Hopfield Network. A Hopfield network uses a simple matrix

notation to describe the coupling strengths between the indi-

Figure 1. Four CSTRs (n) 4) of the type given here, each connected
to their reference reactors via Teflon membranes. The redox potentials
Poti are monitored by Pt/Ag/AgCl redox electrodes. The electric currents
Gj(t) (eq 3) are applied via galvanostats to the Pt working electrodes
inserted in each reactor.

Figure 2. Experimental bifurcation diagram with a SNIPER bifurcation
at 0.85 mA using the electrical current as the bifurcation parameter at
kf ) 6.0× 10-4 s-1. The P1 oscillations of the free running system
change into a nodal steady state at the SNIPER bifurcation. The
amplitudes of the P1 oscillations remain almost constant, while the
averaged redox potential decreases from 1450 arb. units to 1000 arb.
units at the SNIPER bifurcation.

3104 J. Phys. Chem. A, Vol. 102, No. 18, 1998 Hohmann et al.



vidual units, where, in principle, each unit may be connected
to any of the other units. Hopfield nets are able to recognize
encoded patterns if the presented patterns contain relatively few
errors with respect to the encoded patterns. If there are more
than 50% errors, the network recognizes the mirror images of
the encoded patterns.
To establish a Hopfield matrix, one may use a bipolar notation

for a single interaction. We use+1 for the notation of a periodic
state and-1 for a nodal steady state. The coupling weights
wij between reactori and j are calculated as the sum of the
products of two interacting states, wherep is the number of
patterns to be encoded:

In other words, if two coupled reactors are in the same state
(i.e., both in the oscillatory or both in the steady states), the
product of their statistical weights is always+1 (positive); if
the two states are unlike, the product of their statistical weights
is always-1 (negative). For several encoded patterns the
individual statistical weight products are simply added and the
sum is entered into the Hopfield matrix. In previous work3 we
used only negative entries, since the stored patterns were out-
of-phase by 180°, or, later,4 positive entries, because all stored
patterns involved only in-phase oscillatory states. The weights
of the Hopfield matrix are calculated (learned) in one step for
all patterns to be encoded. In subsequent recognition experi-
ments these weights do not change.

Encoding Patterns 15 and 16.As an example, we encode
patterns 15 and 16 (Figure 3). These were chosen because their
Hopfield matrixW contains positive as well as negativewij

values (coupling constants).W is identical for the correspond-
ing mirror images 13 and 14:

Note that all elementsw3j andwi3 are equal to zero; that is,
reactor 3 is uncoupled in this special case. One may write the
following coupling scheme.

The electrical currentsGj(t) applied to reactorj via the Pt
working electrode are

whereGjin (bias) is set equal to 0.45 mA (1.05 mA) for a
periodic (nodal) state, Poti,av are the averaged redox potentials
andwij are the coupling strengths between reactori andj. Since
the redox potential of the nodal steady state was arbitrarily set
equal to 1000 au, the latter must be subtracted from each
averaged redox potential in order to establish the nodal steady
state as the reference state.
Averaging over a Periodic State.To achieve a transforma-

tion from the P to the N state (termed negative coupling), we
found it appropriate to use the average of the periodic potential
Poti,av as input into theGj(t) equations. To calculate an average
value of the periodic potential, the amplitudes of the previous
∼1.5 oscillations (50 s) were averaged. The averaging process
is extended also over the nodal states. It must be sufficiently
long to avoid any large periodic fluctuations in Poti,av.
In the following recognition experiments all experimentalwij

values have been empirically set to-1.25µA. This indicates
that the contribution of an oscillating reactori (Poti,av≈ 1400
arb. units) to the currentGj(t) in reactorj is ca.-500µA (-1.25
(1400-1000)µA) if reactori andj are positively coupled, while
for negative coupling between reactori and j the term∼500
µA is added. There will be no effective contribution of a reactor
to the coupling when it is in the nodal steady state (Poti,av )
1000).
It is well-known that the number of encoded patternsp is

limited in a Hopfield net, wherep≈ 0.25x (x is the number of
neurons).11 Accordingly, only one pattern seems to be formally
encoded in the present four-reactor network. However, since
reactor 3 is uncoupled,onepattern is encoded in three reactors

Figure 3. Four reactors showing 16 possible oscillation patterns
(numbered) where P (N) stands for a periodic (nodal) state. The number
of errors with respect to the encoded patterns 15 and 16 is indicated
close to the arrows. For all initial patterns (except patterns 11 and 12)
recognition is achieved. Patterns 13 and 14 are mirror images of patterns
16 and 15, respectively, as indicated by broken arrows. The numbering
of the four reactors is given in the coupling scheme (see text).

wij ) ∑
s)1

p

xi
sxj
s for i * j (1)

wij ) 0 for i ) j (2)

W ) ( 0 -2 0 2
-2 0 0 -2
0 0 0 0
2 -2 0 0

)

G1(t) ) G1in - w21(Pot2,av- 1000)+ w41(Pot4,av- 1000)

G2(t) ) G2in - w12(Pot1,av- 1000)+ w42(Pot4,av- 1000)
(3)

G3(t) ) G3in

G4(t) ) G4in - w14(Pot1,av- 1000)+ w24(Pot2,av- 1000)
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(and not in four) which is still tolerated by the network. Since
reactor 3 will remain either in a P or in a Nstate as determined
by its initial G3in, there are altogethertwo encoded patterns in
four reactors.

Results and Discussion

The following experiments briefly discuss the associations
of all 14 initial patterns to the encoded patterns 15 and 16 using
the coupling equations 3. There are 120 ways to combine 16
patterns in groups of two patterns. We sucessfully tested a
number of these combinations, but they are not reported here
owing to space limitations. Phenomenologically, patterns 15
and 16 differ from each other, of course. However, according
to the Hopfield matrix, the difference between these two patterns
is determined solely by the initial state of reactor 3, which is
uncoupled. Since reactor 3 may be either in the N (pattern 15)
or P (pattern 16) state, there are 16 different patterns instead of
only eight patterns, which might be expected from the entries
in the Hopfield matrix.
Recognition of Patterns 1 and 2. As a representative

example of this group, pattern 2 shows one error with respect
to encoded pattern 16 and two errors with respect to encoded
pattern 15 (Figure 3). The main feature in this group is the

transformation of a periodic state into a nodal steady state
(reactor 2). In all experiments the coupling interactions are
turned on att ) 100 s, as shown in the experimental time series
(Figure 4a). This transformation can best be visualized from
the currentsG1(t) to G4(t) (Figure 4b). After the start of the
coupling interaction, the currentG2(t) crosses the bifurcation
point from the P to the N state. Due to the variations of Pot1,av

and Pot4,av, G2(t) oscillates while it remains in the nodal steady
state. From the bifurcation diagram it is evident (Figure 2) that
there is practically no change in the nodal concentration even
thoughG2(t) oscillates due to its coupling with reactors 1 and
4. It will be observed that reactors 1 and 4 phase-lock as a
consequence of the positive coupling+w14 ()w41) between
them. The initial currentsG1(t) andG4(t) are further lowered
due to the negative termsw41(Pot4,av- 1000) andw14(Pot1,av-
1000), respectively.G3(t) remains constant since reactor 3 is
uncoupled. Starting the recognition experiment with pattern 1,
the same responses of reactors 1, 2, and 4 are obtained (not
shown) if the averaging procedure is employed, and the
recognition process results in the encoded pattern 15.
Figure 4c shows the currents when the redox potentials of

the periodic state in each reactor are not averaged. It is seen
that G2(t) is shifted to a higher current while it periodically
crosses the SNIPER bifurcation after synchronization between

a

b

c

Figure 4. (a) Experimental time series (all four reactors) of the
recognition experiment using averaged coupling starting with pattern
2. Pattern 2 is associated with pattern 16 (one error); (b) time course
of currentsG1-G4 using the averaged redox potentials; (c) the
nonaveraged redox potentials in eq 3. The threshold current at the
SNIPER bifurcation is indicated as a solid line in b and c.

a

b

c

Figure 5. (a) Experimental time series of the recognition experiment
using averaged coupling starting with pattern 4. Pattern 4 is associated
with pattern 16 (one error); (b) time course of currentsG1(t)-G4(t) for
averaged coupling; (c) for nonaveraged potentials in eq 3. The threshold
current at the SNIPER bifurcation is indiated as a solid line in b and
c.
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reactors 1 and 4 has taken place. As a consequence, reactor 2
will respond with oscillations instead of the desired nodal steady
state. Thus recognition is not possible here without the
averaging procedure.
Recognition of Patterns 3, 4, 5, and 6.In this one-error

group of patterns a nodal steady state is transferred into a
periodic state. For example, pattern 4 shows one error with
respect to pattern 16 and two errors with respect to the other
encoded pattern 15. The time series of the recognition processes
using the averaged redox potentials Poti,av in eq 3 are shown in
Figure 5a for all four reactors using pattern 4 as an initial state.
When coupling has been turned on, reactor 4 is transformed
from an N into a P state since the currentG4(t) is lowered from
the nodal steady state (1.05 mA) to a P state whose current is
below 0.85 mA (Figure 5b).G2(t) is increased whileG1(t) is
lowered upon coupling. Couplingwithoutaveraging also leads
to oscillations in reactor 4, sinceG4(t) periodically crosses the
bifurcation point (threshold) (Figure 5c), which will lead to
forced oscillations. In this group of patterns recognition is
achievedwith orwithoutaveraging. When pattern 3 is used as
the initial pattern, a similar behavior of reactors 1, 2, and 4
will be observed, leading to pattern 15 as the recognized pattern.
Patterns 6 and 5 are symmetrical to patterns 4 and 3,

respectively, and they display a recognition behavior similar to
patterns 4 and 3 (not shown). Patterns 5 and 3 are recognized
as pattern 15 (one error), while pattern 6 changes into pattern
16 (one error).
Recognition of Patterns 7, 8, 9, and 10.The behavior of

this group of patterns is more complex since they all show two
errors with respect to their closest target patterns. For example,
pattern 10 has two errors with respect to pattern 16 and three
errors with respect to pattern 15. Two different time series for
pattern 10 are possible, as shown in Figure 6a,c. After turning
on the coupling, pattern 10 changes either into pattern 16 (Figure

6a) or, surprisingly, into pattern 14 (Figure 6c) with a 50:50
probability. In fact, pattern 14 is the mirror image of pattern
15, and the Hopfield matrix represents both the encoded patterns
as well as their mirror images. At the start of coupling neither
reactor 3 nor reactor 1, which is in a nodal steady state, makes
any contribution to the coupling. As a result of the negative
coupling between reactors 2 and 4, both reactors transiently
approach the nodal state; that is, Pot2,av and Pot4,av decrease,
resulting in increased currentsG2(t) andG4(t) (Figure 6b,d).
After a short transience (at∼130 s) either reactor 2 (Figure 6c)
or reactor 4 (Figure 6a) will change into a periodic state with
a 50:50 probability. If, due to fluctuations, reactor 2 accidentally
oscillates first, then reactors 1 and 4 remain or end up in the N
state, respectively. On the other hand, if reactor 4 oscillates
first, then reactor 2 ends up in the N state while reactor 1 shows
delayed oscillations due to the positive coupling between
reactors 4 and 1. Similar scenarios occur for patterns 3 and 5.
Nonrecognition of Patterns 11 and 12.Patterns 11 and 12

are the only two patterns (two errors) that cannot be recognized
since reactors 1, 2, and 4 are all in nodal states; that is, all
relevant differences (Poti,av - 1000) are equal to zero (eq 3).
This means that there is no interaction between the reactors and
local coupling does not come into play. Therefore all reactors
in these two patterns will remain in their initial dynamic states;
they are dynamically inert.
Pseudorecognition of Patterns 13 and 14.Patterns 14 and

13 are the mirror images of the encoded patterns 15 and 16,
respectively. Since mirror images lead to the same Hopfield
matrix, patterns 14 and 13 are encoded as well. Thus, if patterns
14 and 13 are offered as initial conditions, there will be no
transformation process. This situation may be called pseudo-
recognition since the mirror images of the encoded patterns are
the target patterns in this case. Moreover, a transformation into
patterns 16 and 15 is not expected here since three errors

a c

b d

Figure 6. (a and c) Experimental time series; (b and d) time course of electrical currents of recognition experiments with averaged coupling
starting with pattern 10. With a 50:50 probability pattern 10 changes either into pattern 16 (two errors) (a) or into pattern 14 (one error) (c); pattern
14 is the mirror image of pattern 15. See Figure 3 and text.
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(∼75%) would be formally involved in the recognition process
that the network cannot overcome.
Recognition of the Encoded Patterns 15 and 16.The

presentation of patterns 15 and 16 does not lead to any
tranformations since patterns 15 and 16 have been encoded and
they are immediately recognized (zero error).

Simulations

Model of the Nonlinear Seven-Variable Montanator. To
simulate learning and pattern recognition, we use the seven-
variable Montanator model,15 which was developed by Gyo¨rgyi
and Field. The mechanism of the seven-variable model is given
in Table 1, and the rate constants and concentrations of the
inflow species are given in Table 2. The seven variables of
the model are bromous acid, bromide, bromate, bromomalonic
acid, bromomalonic acid radical, Ce3+, and Ce4+. The numer-
ical integrations of the differential equations were performed
using the Gear method.16,17 We simulate the effect of the
electric current by adding the term+C[Ce4+] to the rate equation
for [Ce3+] and by adding the negative term-C[Ce4+] to the
rate equation of [Ce4+]:

whereC is a parameter that is proportional to the amount of
charge delivered at the Pt working electrode. The inflow
concentration of Ce3+ is given by [Ce3+]0 andf([Ce3+]) contains
the rate equation of the model (Table 1). The bifurcation
diagram with the electric currentC as the bifurcation parameter
is shown in Figure 7. P1 oscillations occur fromC) 0 toC)
0.11. A SNIPER bifurcation is observed atC ) 0.11, beyond
which a nodal steady state exists.4 To obtain P1 oscillations in
the free running mode without electric current, a flow rate ofkf
) 3.5× 10-4 s-1 was chosen. The semiquantitative agreement
with the experimental bifurcation diagram (Figure 2) is sufficient

to realistically model the effect of the electric current in the
learning and recognition phases.
Recognition of Pattern 5. All recognition calculations for

the encoded patterns 15 and 16 and other pattern combinations
were carried out successfully, but they are not shown here.
However, as a representative example, we offer pattern 5 as
the initial pattern to demonstrate recognition in the simulations
of the four coupled reactors (eq 3). Pattern 5 shows one error
with respect to pattern 15 and two errors with respect to pattern
16. Recognition involves the conversion of an N state in reactor
1 to a P state. When coupling was turned on at 5000 s (Figure
8) in the simulations, it was immediately obvious that coupling
without aVeraging the Ce4+ concentrations does not lead to
recognition of pattern 15 since reactor 2 is in the P and not in
the N state. Furthermore, reactors 1 and 2 show oscillations
with small amplitudes due to the oscillations of the current after
coupling has been started. Recognition can be easily achieved,
however, by averaging over the Ce4+ concentrations in the P
states (Figure 9). It is important to note that this average value
lies somewhat below the nodal steady state in the model,
whereas in the experiments the average isaboVe the experi-
mental nodal steady state. The reference state in the simulations
is also the nodal steady state whose value is 7.79× 10-6 M
(e.g., Figure 8) as compared with 1000 arbitrary units assigned
to the nodal steady state in the experiments. Thus thewij values
carry opposite signs in the simulations as compared with the
experiments. It is noted that coupling equations in the simula-
tions are identical with the coupling equations in the experiments
(eqs 3). Thus, when coupling is started (Figure 9), the current
in reactor 1 declines fromC) 0.12 (steady state) toC) 0.091
(P1 oscillations,T) 480 s) (Figure 9b). These oscillations are
stabilized after a transient time of∼1500 s. Reactors 2 and 3
remain in the nodal state; reactor 4 remains in the P state (t )
180 s). It is seen that the frequency in reactor 1 is lower than
that in reactor 4. The reason is the difference in the currents
C1 andC4, whereC4 < C1. In the SNIPER scenario higher
currents always lead to lower frequencies. The average of
[Ce4+] has been calculated using all oscillations in the time
series. Pattern recognition is not successful in the simulations
if the average is calculated only from a small number of
oscillations.
Interactive Gaussian Noise. To realistically simulate an

experiment, we added Gaussian distributed noise to the model
in the recognition process. This was done by adding interactive
noise to all seven variables. As a result, Gaussian distributed

TABLE 1: Seven-Variable Model (Nonstoichiometric Steps)a

Br- + HBrO2 + H+ f 2BrMA (R1)
Br- + BrO3

- + 2H+ f BrMA + HBrO2 (R2)
2HBrO2 f BrO3

- + BrMA + H+ (R3)
BrO3

- + HBrO2 + H+ f 2BrO2
• + H2O (R4)

2BrO2
• + H2O f BrO3

- + HBrO2 + H+ (R5)
Ce3+ + BrO2

• + H+ f HBrO2 + Ce4+ (R6)
HBrO2 + Ce4+ f Ce3+ + BrO2

• + H+ (R7)
MA + Ce4+ f MA • + Ce3+ + H+ (R8)
BrMA + Ce4+ f Ce3+ + H+ (R9)
MA • + BrMA f MA + Br- (R10)
2MA• f MA (R11)

aMA ) malonic acid; MA• ) malonic acid radical; BrMA)
bromomalonic acid.

TABLE 2: Rate Constants and Concentrations of the
Seven-Variable Model

kR1 2.0× 106 s-1 M-2 kR2 2.0 s-1 M-3

kR3 3.0× 103 s-1 M-1 kR4 3.3× 101 s-1 M-2

kR5 7.6× 105 s-1 M-2 kR6 6.2× 104 s-1 M-2

kR7 7.0× 103 s-1 M-1 kR8 3.0× 10-1 s-1 M-1

kR9 3.0× 101 s-1 M-1 kR10 2.4× 104 s-1 M-1

kR11 3.0× 109 s-1 M-1

[BrO3
-] 0.1 M [H+] 0.26 M

[H2O] 55 M [Ce3+]0 8.33× 10-4 M
[MA] 0.25 M

d[Ce3+]
dt

) f([Ce3+]) - kf([Ce
3+] - [Ce3+]0) + C[Ce4+]

d[Ce4+]
dt

) f([Ce4+]) - kf[Ce
4+] - C[Ce4+])

Figure 7. Calculated bifurcation diagram for Ce(IV) of the seven-
variable Montanator model. The electrical currentC is the bifurcation
parameter. The oscillations P change into a node N at the SNIPER
bifurcation atC ) 0.11.

3108 J. Phys. Chem. A, Vol. 102, No. 18, 1998 Hohmann et al.



noise leads to recognition of patterns 15 and 16 only if the
standard deviation (D) is less than 1× 10-4 (Figure 10).
Gaussian noise ofD g 10-4 leads to nonrecognition.
Learning Process. Learning IteratiVely without Noise.In

a traditional Hopfield network, learning is carried out in a single
step by constructing the Hopfield matrix according to the rules
of eqs 1 and 2 without any later changes in the matrix elements.
In contrast, here we simulate the learning process by iterative
presentations of patterns to be encoded. With each iteration
step a small increment∆wij is added to the relevant elements
of the Hopfield matrix starting from zero. For patterns 15 and
16 to be encoded we chose∆wij ) 200 arb. units to iteratively
build up their Hopfield matrix. In the computer experiment
we use pattern 5 as a test pattern for recognition, which involves
the transformation of reactor 1 from an N to a P state. We
found that recognition was achieved at the 110th iteration. At
iteration 109 and below recognition was completely absent.
Recognition occurred at all steps above 109 iterations. Thus
the elements in the Hopfield matrix reached their critical values
for recognition at iteration 110. The critical value ofwij for
recognition is therefore 22 000 arb. units ()200× 110) in the
simulations. The choice of lower values of∆wij was also tested;
as a result, more iterations were required for recognition.
Therefore, in the absence of any noise, recognition occurs

abruptly in a stepwise fashion at a certain threshold in this small
model network. This situation is analogous to a first-order phase
transition. However, when parameter noise is added to the
coupling strengths, the recognition curve broadens.
Learning IteratiVely with Parameter Noise.To study the

effect of noise, we added parameter noise of a normal distribu-
tion to all elements of the Hopfield matrix. Starting from
randomized elements (synapses) the increments∆wij andRê
were added to the elements of the matrix for patterns 15 and
16 at each learning iteration.ê is equally distributed between
+1 and-1. The noise varied in each of the ranges (R) 1000,
1500, 3000, and 5000 arb. units (Figure 11). For every learning
iteration the average recognition probability is plotted versus
the number of iterations, where each point represents an average
of 200 numerical calculations.
For noise levels of 1000 arb. units the recognition curve is

broadened and 100% recognition is no longer achieved (Figure
11). In fact, for large numbers of iterations (∼350) the
recognition curve declines due to the accumulation of noise in
the Hopfield matrix. For noise ofR 1500 and 2000 arb. units
the recognition curve shows a similar but more pronounced
behavior: a steeper increase and a lower maximum is observed
at a lower number of iterations. Finally, very large noise (3000
and 5000 arb. units) dramatically affects learning and recogni-

a

b

Figure 8. (a) Simulated time series and (b) currentsC1-C4 describing
the recognition process starting with pattern 5. The nonaveraged Ce(IV)
concentrations lead to nonrecognition.

a

b

Figure 9. (a) Simulated time series using averaged coupling for pattern
5, leading to recognition of pattern 15; (b) currentsC1-C4 for the
recognition process in a starting with pattern 5.
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tion. Although the first iteration already produces recognition
in a few percent of the 200 recognition simulations, the
recognition curve does not even reach the 50% mark (∼40%
recognition at∼70 iterations for 5000 arb. units), and it declines
rapidly to zero due to the effective randomization of all elements
in the Hopfield matrix. The latter decline may be called

“forgetting”. In the latter case a large number of iterations is
detrimental to the learning process. Thus noise seems to be
advantageous in the early stages of learning but disadvantageous
in the later stages. In all cases noise reduces the maximum
attainable recognition probability from unity, which is reached
in a noise-free system.

Conclusions

Two patterns were encoded in a small chemical reactor
network consisting of four reactors that were coupled according
to a Hopfield net. A single reactor can assume either a periodic
(P) state or a nodal (N) state in the BZ reaction where the
bifurcation between the two states is relatively sharp (SNIPER
bifurcation). Other “sharp” bifurcations (e.g., subcritical Hopf
bifurcation) would also be suitable to carry out recognition
processes. The bifurcation parameter is the electrical current
that leads to redox processes on the Pt working electrodes. Local
coupling between the reactors also occurs by the electrical
current. The present recognition experiments are carried out
without global coupling. Problems arise in general if negative
and positive couplings occur simultaneously in a small network.
The use of an averaged oscillatory signal makes it possible to
circumvent this problem at the expense of any phase informa-
tion. There are 16 ()24) different reactor states with 120
possible combinations, of which two are selected (patterns 15
and 16) as the patterns to be encoded in the experiments
described here. The experimental network is capable of
associating all remaining (14) patterns with the two encoded
patterns except for patterns 11 and 12, which are nonrecog-
nizable, since they are dynamically inert. Patterns 13 and 14
are also encoded since they are mirror images of the two
encoded patterns 15 and 16. In computer simulations we are
able to reproduce all experiments by the use of the Gyo¨rgyi-
Field model for the BZ reaction. Interactive noise reduces the
recognition capability of the network. To our knowledge we
present a novel iterative learning procedure in building up the
elements in the Hopfield matrix without any back-propagation
of errors. The iterative learning method is tested by the
calculation of a recognition curve which resembles a sharp first-
order phase transition in this small network in the absence of
parameter noise or interactive noise. When parameter noise
(without interactive noise) is included in the iterative learning
process, the recognition curve is broadened and the maximum
recognition probability declines dramatically. It is observed that
a large amount of parameter noise leads to an early rise in the
recognition probability at the cost of a substantially reduced
maximum in the recognition curve. Thus parameter noise
augments the recognition process in the early stages of learning,
whereas it reduces recognition in its later stages.
It is noted that mass coupling is restricted to positive coupling,

and only those few patterns that are characterized by positive
coupling may be recognized.8 On the other hand, the present
electrical coupling method together with the averaging procedure
is capable of performing positive as well as negative coupling,
since electrical currents can be added or subtracted. The
averaging procedure removes any phase information which,
however, is not critical for the present recognition experiments.
Reactor networks consisting of eight electrically coupled reactors
are under investigation.
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Figure 10. Time series of reactor 1 with Gaussian-distributed
interactive noise imposed on all seven variables, where pattern 5 is
offered as initial pattern. Gaussian-distributed noise is added to all seven
variables of the Montanator model. Nonrecognition is observed forD
g 1 × 10-4.

Figure 11. Recognition curve for iterative learning with∆wij ) 200
arb. units with parameter noise ofR) 0, 1000, 1500, 2000, 3000, and
5000 arb. units without interactive noise. Learning without or with very
small parameter noise (solid line) leads to a sharp “phase transition”
at the 110th iteration. The recognition curve for very small parameter
noise (R) 10 arb. units, not shown) is indistinguishable fromR) 0.
For increasing noise ranges the recognition curves become broader and
their maxima are lower. Time required to simulate one point: 2-3
days.
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